PERIODIC TABLE OF ELEMENTS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 H Hydrogen 1.008	Atomic Symbo Name Weight	ol	Solid				tals		Met	Nonme	etals			Pnictogens	Chalcogens	Halogens	2 He Helium 4.0026 6	KLMNOPQ
2	3 Li Lithium 6.94	Be Beryllium 9.0122	Hg	Liquid Gas		Alkaline eart metals Alkali metals	Lanthar (Lanthar	anides)	metals Transition metals	Metalloids Post-transition	Other	Noble gases	5 B Boron 10.81	6 ² C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	F Fluorine	10 ² 8 Ne Neon 20.180 6	KLMNOPQ
3	11 ² Na Sodium 22.990	12 ² / ₂ Mg Magnesium 24.305]		_ .	(Actinid	des)	Á		*	<u>6</u>	13 \$\frac{2}{3}\$ All Aluminium 26.982	14 ² / ₄ Si Silicon 28.085	15 ² / ₅ P Phosphorus 30.974	16 & S Sulfur 32.06	17 ² / ₈ Cl Chlorine 35.45	39.948	KLMZOPQ
4	19 ⁸ ¹ K Potassium 39.098	20 8 2 Calcium 40.078	21 § Sc Scandium 44.956	22 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 ⁸ ½ Vanadium 50.942 ✓	24 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2	26 Fe Iron 55.845	27	28 18 18 18 18 18 18 18 18 18 18 18 18 18	29 (1) Cu Copper 63.546	30 the second se	31 (8) Gallium 69.723	32	33 table 18	34 18 8 8 8 8 8 9 8 9 7 1 8 9 9 7 1 8 9 9 7 1 8 9 9 7 1 8 9 9 7 1 8 9 9 7 1 8 9 9 7 1 8 9 9 7 1 8 9 9 7 1 8 9 9 7 1 8 9 9 7 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	35 8 7 8 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9	36 Kr Krypton 83.798 6	K L M N O P Q
	37 Rb 1 Rubidium 85.468	38 18 28 28 28 28 28 28 28 28 28 28 28 28 28	39 18 9 2 Yttrium 88.906	91.224	92.906	42 18 Mo 13 Molybdenum 95.95	43 18 13 2 Technetium (98)	Ru 151 Ruthenium 101.07	45 Rh 19 Rhodium 102.91	46 Rd Palladium 106.42	47 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	48 18 18 18 18 18 18 18 18 18 18 18 18 18	49 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	50 18 8 18 18 18 18 18 18 18 18 18 18 18 1	51 18 18 18 18 18 18 18 18 18 18 18 18 18	52 18 18 18 18 18 18 18 18 18 18 18 18 18	53 18 7 10dine 126.90	54	KLMZOPO
6	55 18 18 Caesium 132.91	137.33 🍫	57–71	72 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	73 18 12 12 12 12 12 12 12 12 12 12 12 12 12	74 18 18 18 18 18 18 18 18 18 18 18 18 18	75 18 18 12 12 12 12 12 12 12 12 12 12 12 12 12	76 18 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25	77 18 18 32 12 17 192.22	78 18 8 9 17 17 17 17 17 17 195.08	79 18 18 28 29 29 29 29 29 29 29 29 29 29 29 29 29	80 18 18 18 18 18 18 18 18 18 18 18 18 18	81 18 18 18 18 18 18 18 18 18 18 18 18 1	82 18 18 Pb 18 18 18 18 18 18 18 18 18 18 18 18 18	83 18 18 18 18 18 18 18 18 18 18 18 18 18	84 18 32 Po 18 Polonium (209)	85 18 18 18 18 18 18 18 18 18 18 18 18 18	86 Rn Radon (222)	KLMZOFQ
	87 18 18 18 18 18 18 18 18 18 18 18 18 18	88 18 Ra Radium (226)	89–103	104 18 Rf 32 Rutherfordium (267)	105 18 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	106 18 Sg 32 22 Seaborgium (269)	107 8 8 Bh 32 2 Bohrium (270)	108 18 18 18 14 14 14 14 14 14 14 14 14 14 14 14 14	109 18 18 32 15 Meitnerium (278)	110 18 18 18 22 22 22 22 22 22 22 22 22 22 22 22 22	111 18 18 18 18 18 18 18 18 18 18 18 18	112 18 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	113 18 18 18 18 18 18 18 18 18 18 18 18 18	114 18 18 18 18 18 18 18 18 18 18 18 18 18	115 18 18 MC 32 18 Moscovium (290)	116 18 18 18 Ly 32 18 Livermorium (293)	117 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	118 18 18 18 Oganesson (294)	KLMNOPQ
				For ele	ments wi	ith no stab	ole isotop	es, the m	iass numl	ber of the	isotope	with the lo	ongest ha	ılf-life is ir	n parentho	eses.			\neg
			6	57 18 18 18 2 2 Lanthanum 138.91	58 18 Ce 2 Cerium 140.12	59 18 21 Praseodymium 140.91	60 18 22 28 2 Neodymium 144.24	61 18 28 28 29 Promethium (145)	62 18 18 2 Samarium 150.36	63 18 25 Europium 151.96	64 ² Gd ²⁹ Gadolinium 157.25	65 18 18 7	66 18 2 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	67 18 Ho 29 Holmium 164.93	68 18 2 Erbium 167.26	69 18 18 18 18 18 18 18 18 18 18 18 18 18	70	71 18 18 19 2 2 Lutetium 174.97	
	Pta	able	7	89 18 18 18 18 18 18 18 18 18 18 18 18 18	90 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	91 18 22 22 22 23 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	92 18 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	93 18 18 22 Neptunium (237)	94 18 22 Plutonium (244)	95 18 22 28 29 29 29 29 29 29 29 29 29 29 29 29 29	96 18 28 29 Curium (247)	97 18 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	98 18 28 28 Californium (251)	99 18 28 29 29 Einsteinium (252)	100 18 18 Fermium (257)	101 18 18 Md 31 18 Mendelevium (258)	102 18 No 32 Nobelium (259)	103 18 Lawrencium (266)	

Design Copyright © 2017 Michael Dayah (michael@dayah.com). For a fully interactive version with orbitals, isotopes, compounds, and free printouts, visit http://www.ptable.com/

The Periodic Table, **Electron Configuration** & Chemical Bonding

Lecture 7

Electrons

- We will start to look at the periodic table by focusing on the information it gives about each element's electrons.
- How electrons are configured about the nucleus is reflected in the structure of the periodic table.
- The electron clouds of atoms are what interfaces when atoms meet, and dictate how they interact.

The periodic table A Simple version with just a symbol and the atomic number of all the elements that make up matter. He 2 Н C B 5 Ν F 0 Ne Li Be 8 10 The rows are called **periods** and the columns are called **groups**. Si CI Αl Ar Na Mg 13 15 16 17 14 18 12 11 Ge K Ca Sc Τi V Cr Mn Fe Co Ni Cu Zn Ga As Se Br Kr 25 19 20 21 22 23 24 26 27 28 29 31 33 34 35 36 30 Rb Sr Υ Mo Cd Sn Sb Zr Nb Tc Ru Rh Pd Ag Te Xe In 39 42 37 38 40 43 44 45 47 48 53 54 41 46 49 50 51 52 Cs Hf Τi Ba La Ta W Os lr Pt Hg Pb Bi Po Rn Re Au At 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Uuu Uub Unq Unp Unh Uns Uno Une Uun Uut Uuq Uup Uuh Uus Uuo Fr Ra Ac 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 87 88 89

Lanthanide series	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	G d 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71
Actinide	Th	Pa	U 92	N p	Pu 94	Am 95	Cm 96	Bk	C f	Es	Fm 100	Md 101	No 102	Lr
series			\ \frac{1}{2}										102	100

Periods and Groups

- This table is set up in order of increasing atomic number.
- It also has rows called **periods** and columns called **groups**. This structure gives the ground state **electron configuration** for any atom.
- There are 4 quantum numbers associated with any electron that describe its existence in space, we will concern ourselves with two, one of energy level and that of its orbital.

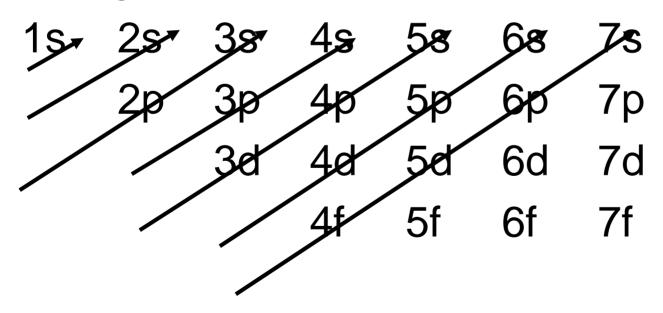
principal energy level

There are 7 periods they are numbered 1-7 and represent the occupied **principal energy level**.

This is also called the principal quantum number and describes the distance of an electron from the nucleus.

As levels increase there are sublevels, or orbitals found within them. (s,p,d,f)

Rules


- Electrons should occupy the lowest energy states possible. (closest to the nucleus)
 - usually : s
- Energy states are denoted by principal energy level & sublevels determined by electron #.
- Sublevels and levels have a maximum number of electrons possible.
- When a sublevel fills the next level includes the previous.
- Each element repeats the configuration of the previous and adds one electron.

Higher levels

- We will leave the explanation of the filling of the other sublevels to more advanced courses.
- However, you may have noticed with potassium and calcium:
 - the d sublevel of principal energy level 3 does not start to fill until after the s sublevel of the next principal energy level fills (4s).

The Diagonal Rule for Configurations Begin at the left and follow each arrow from tail to head and then from left to right.

There is an order to the filling of sublevels within a principal energy level. The filling of the levels is irregular.

Applying the Diagonal Rule

 Simply count electrons until the sublevel is filled, and then move to the next sublevel in the order given by the diagonal.

 Each new atom always repeats the pattern of the one before it.

Principal	Sublevel(s)	Max. # of electrons
Energy Level		
1	S	2 level 1: up to 2
2	S	2 level 2: up to 8
	p	6
3	S	2 level 3: up to 18
	p	6
	d	10
4	S	2 level 4: up to 32
	p	6
	d	10
	f	14
n	n types of sublevels	Level n up to 2n ² electrons
	(<i>s,p,d,f</i> and others)	

What do these mean?

• 5f⁸

```
– principal energy level?
   - sublevel?
   – Electrons in that sublevel?
• 3d<sup>6</sup>
   – principal energy level?
   - sublevel?
   – Electrons in that sublevel?
```

Notation

 Suppose the p sublevel on the principal energy level 3 contains 2 electrons.

We write this so: $3p^2$

How many electrons total does this atom have?

 $1s^22s^2p^63s^2p^2 = 14$ electrons total

Element	Atomic number	Electron configuration
Н	1	1s ¹
He	2 level 1 complete	1s ²
Li	3	1s ² 2s ¹
Ве	4	1s ² 2s ²
В	5	1s ² 2s ² 2p ¹
С	6	1s ² 2s ² 2p ²
N	7	1s ² 2s ² 2p ³
0	8	1s ² 2s ² 2p ⁴
F	9	1s ² 2s ² 2p ⁵
Ne	10 level 2 complete	1s ² 2s ² 2p ⁶

Noble Gases

- These items have 2 or 8 electrons in their outer principal energy levels.
- They are also found in the last column of the periodic table.
- The element following a noble gas is at the next higher energy level.
- To save space, the atom of that noble gas is written in brackets followed by the remaining configuration.

Orbitals

These are parts of sublevels.

- They have 0, 1, or 2 electrons.
 - 0 is empty
 - 1 is half full.
 - 2 is filled.

sublevels

- s has 1 orbital.
- p has 3 orbitals. (it can hold up to 6 electrons)
- d has 5 orbitals.
- Orbitals are noted by dashes

s p d

Filling the orbitals

 Magnetic properties are visible and the electrons have different spin within an orbital.

```
    ____ empty orbital
    ____ 1 electron (+1/2 spin)
    ____ 2 electrons (+1/2 spin, -1/2 spin)
```

Orbitals fill in such a way that they go to the furthest point away within a sublevel, it half fills orbitals.

Element	sublevel	By orbital
Н	1s ¹	<u></u>
He	1s ²	$\uparrow \downarrow$
Li	1s ² 2s ¹	<u> </u>
Ве	1s ² 2s ²	$\uparrow\downarrow$ $\uparrow\downarrow$
В	1s ² 2s ² 2p ¹	<u>↑</u>
		1s 2s 2p 2p 2p
c	1s ² 2s ² 2p ²	
N	1s ² 2s ² 2p ³	
0	1s ² 2s ² 2p ⁴	
F	1s ² 2s ² 2p ⁵	
Ne	1s ² 2s ² 2p ⁶	

Valence electrons

- These are the outermost principal energy level <u>electrons</u>.
- The outermost principal energy level is the valence level.
- Valence electrons are <u>only</u> found in <u>s & p</u> sublevels.
 - They will vary between 1 and 8 electrons only.

Atomic Structure Determines:

- How molecules form & stay together
 - which atoms bond and in what quantity

 How molecules interact with other molecules and atoms

Types of Chemical Bonds

<u>Covalent:</u> electrons are <u>shared</u> between neighboring atoms, they orbit both nuclei holding the molecule together

<u>lonic:</u> electrons move to electronegative atoms, creating charged atoms, oppositely charged atoms are held together by electrostatic force (+-)

(after the electron leaves an atom, the atom is positively charged, where the electron goes becomes negatively charged)

Metallic: such atoms have the ability to lose electrons creating a strong positive nucleus and the outer electrons move freely around all of the metallic atoms (making them good conductors)

Van der Waals: polar molecules interacting (Polar molecules have partial charge)

Like a Hydrogen bond between water molecules

For an example: Look at Water

- Chemical formula for water is H₂O
- Every water molecule has 2 hydrogen atoms and one oxygen atom
- How ?
- You must look at individual atomic structure to understand how the bonds formed

Bohr Model of the atom helps to visualize bonding

(A good starting point: not perfect though.)

- It is the electrons that interface between atoms, but proton charge is half of electrostatic force which holds molecules together
- Atomic # tells you proton # and electron #
- It is the amount of electrons in the outermost region that is of interest:
 valence electrons (usually equal to group or vertical column # of the periodic table)

The Atomic Number & Mass

To know :

- the # of electrons in an atom look at the atomic number, it is the same.
- the # of protons in an atom look at the atomic number, it is the same.
 - (electron # and proton # are equal in the balanced stable state of an atom)
- the # of neutrons in an atom subtract the atomic number from the mass
 - Total mass proton mass = neutron mass
 (Protons weigh just over 1 amu, neutrons just a bit more)

A **Neutron** weighs 1.009amu A **Proton** weighs 1.007 amu

To calculate <u>neutrons</u> just round off and use 1.0 amu per proton & subtract it from the atomic mass.

Then round off the answer to equal the neutrons.

For example: Hydrogen (H)

- has an atomic number of 1
 - So it has 1 proton
 - And it has 1 electron
- has an atomic mass of 1.00794amu (neutrons & protons make up the mass)
- Its proton mass is (mass of protons) x (# of them)

 Atomic number
 - 1.007amu x 1proton = ~1amu=mass from protons

Subtract it from the total mass of the atoms, to get the remaining mass from neutrons

1.00794-1.007 = 0.00094 Neutrons = 0 N

How about an isotope of Hydrogen? the nuclide of deuterium: 2 ₁H

- has an atomic number of 1, just like all hydrogen
 - So it has 1 proton
 - And it has 1 electron
- But it has a different atomic mass of~2.0 amu (neutrons & protons make up the mass)
- Its proton mass is (mass of protons) x (# of them)
 Atomic number
 - 1.007amu x 1proton = ~1amu=mass from protons

Subtract it from the total mass of the atoms, to get the remaining mass from neutrons

 \sim 2.0 amu - 1.007 = 0.993 Neutron = \sim 1 N

Try another: Sodium (Na)

- Atomic number is 11
- Atomic mass is 22.989768 amu

- Electron # ?
- Proton # ?
- Neutron #?

Sodium (Na)

- Atomic number is 11
- Atomic mass is 22.989768 amu

- Electron # 11
- Proton # 11
- Neutron # 22.989768 11 = 11.98
 - ~12 neutrons on average

Writing & Naming Chemicals

- Chemical formulas represent chemical entities (a single atom or molecules)
- The symbol and numbers are used to write them
- **Diatomic** molecules are made of 2 atoms:
 - H₂, O₂, N₂, F₂, Br₂, I₂, Cl₂ ... (but not always the same type of element)
- Polyatomic molecules are made of 3 or more atoms: O₃,H₂O, CH_{4...}

Binary Compounds

- These are molecules with 2 elements
 - (but can have more than two atoms)

A few examples of ionic bonds:

You always start with the positive oxidation number bearing atoms

```
Na<sup>+</sup> Cl<sup>-</sup> = NaCl sodium chloride
```

$$AI^{3+}$$
 CI^{-} $=AICI_{3}$

You write this so Al $^{3+}$ +3Cl⁻ = AlCl₃