
1

Cheat Sheet: Advanced Linux Commands

Lets Get Started…

	 This cheat sheet should help you get started with developing a (web) application on Red
Hat Enterprise Linux (RHEL). We’ll assume you have a VM running RHEL, by - for example
- having run through the steps in the “Using Vagrant to Get Started with RHEL” blog

	 As an example scenario, we are going to pretend we are developing a LAMP (Linux,
Apache, MariaDB and PHP) application on single machine running Red Hat Enterprise
Linux 7. As a first step, we’re going to install Apache, PHP and MariaDB (the drop-in
replacement for MySQL that’s shipped with Red Hat Enterprise Linux 7), and start the
appropriate services:

yum -y install httpd mariadb-server
php-mysql php

Installs the correct packages to start
developing a LAMP application: the Apache
webserver, the base packages for PHP, and
a MariaDB server, including MySQL bindings
for PHP.

systemctl status httpd Show information about httpd, including
process ID, child processes, time since
startup, what man pages are available, the
most recent log messages, and more.

systemctl start httpd mariadb Start the httpd and mariadb services. Instead
of ‘start’, you can also use stop or restart, for
obvious use cases.

systemctl enable httpd mariadb Enable the httpd and mariadb services to
start at next boot. You can also use disable,
mask or unmask.

So the framework is installed and services should be running; let’s check if everything
is ok by checking out the logs. (You must either be a member of the ‘adm’ group on the
system, or run these commands with ‘sudo’ prepended to them to see all log messages.)

journalctl -f -l Show and keep open (-f) the system log,
allowing you to see new messages scrolling
by. The -l flag prevents truncating of long
lines.

journalctl -f -l -u httpd -u mariadb Same as above, but only for log messages
from the httpd and mariadb services.

journalctl -f -l -u httpd -u mariadb
--since -300

Same as above, only for log messages that
are less than 300 seconds (5 minutes) old

Now in order to test our app in the VM, we need the IP address of the server. For that
we want to see the IP address configured for the first network card, called ‘eth0’ in most
virtual machines:

http://Using Vagrant to Get Started with RHEL

2

nmcli d Show the status of all network interfaces

nmcli d show eth0 Show details of network interface eth0;
alternatively you can use ‘ip a s eth0’

nmcli d connect eth0 Bring up the network interface eth0. You
can use ‘disconnect’ to bring the interface
down.

Now let’s drop an example PHP file in /var/www/html to see if everything works

cat << EOF > /var/www/html/test.php
<?php
 phpinfo();
?>
EOF

All text between the first line and EOF
will be added to /var/www/html/test.php.
Any existing content in that file will be
overwritten. This is called a ‘heredoc’.

Now we can download the test.php file from either the same machine, or our local
workstation:

curl http://www.someapp.org/test.php,
or	
curl http://10.0.0.10/test.php

Use the ‘curl’ command to perform a
download of the test.php file at www.
someapp.org or 10.0.0.10, respectively

curl http://localhost:80/someapp/api
-v

Fetch sent and received HTTP GET status,
API response payload from the local host

curl https://localhost:443/someapp/api
-v -F “arg1=foo” -F “arg2=bar”

Fetch sent and received HTTPS POST
status, API response payload from the local
host

host www.someapp.org Use the ‘host’ command to test DNS name
resolution; you might need to run ‘yum -y
install bind-utils’ for this command to work.

Generally, files in /var/www/html are owned by apache.In a dev environment, you might
want to make those files owned by apache and a developer group. Here are some
commands that are useful to make that a reality.

chown apache:developers test.php Change ownership of test.php to “apache”
and the “developers” group. (You can only
change ownership of a file to another user
if you are the superuser, “root”.)

chmod u+rw,g+rw,o+r test.php Change the mode of test.php to allow owner
(u) and users in the group (g) to read and
write (+rw) it, and the rest of the world (o)
to just read (+r) it.

chmod g+rw test.php Allow users in the group of test.php to read
and write it

chmod g+s /var/www/html Special command to make sure that all files
created in /var/www/html are owned by the
group that own /var/www/html; it sets to
so-called sticky bit.

https://en.wikipedia.org/wiki/Here_document#Unix_shells
https://en.wikipedia.org/wiki/Sticky_bit

3

Maybe you have a script that you want to use on that server, too. You’ll need to make it
executable first:

chmod 755 somescript Allow the owner of somescript to read,
write and execute it, and the rest of the
world to just read and execute it.

chmod +x somefile Allow execution of somefile

Red Hat Enterprise Linux 7 ships with a security feature called SELinux. SELinux basically
labels all files, and then whitelists what labels a program (e.g. Apache) is allowed to read.

ls -lZ test.php Show the SELinux label of test.php. Files
in /var/www/html need to be labeled
httpd_sys_content_t (content readable
by Apache) or httpd_sys_rw_content_t
(content readable and writable by Apache).

ausearch -sv no --comm httpd Search the audit log for recently denied
events triggered by Apache (‘httpd’). Useful
for debugging an application that might be
running into SELinux related problems.

restorecon -FvR /var/www/html Use this command to restore the default
labels on all files under /var/www/html if
different from those mentioned above.

getenforce Show what mode SELinux is in: Disabled,
Permissive or Enforcing. Switch SELinux to
enforcing mode with ‘setenforce 1’.

semanage fcontext -l | grep ‘/var/www’ View all SELinux rules that potentially apply
to /var/www in the extensive SELinux docs.

If you have a database on a separate server, you need to allow Apache to initiate network
connections, which SELinux denies by default. This is done by setting an SELinux boolean.

getsebool -a Show all available SELinux boolean settings

setsebool httpd_can_network_connect_db 1 Tell SELinux to allow httpd to make
connections to databases on other servers.
Use the -P flag to make permanent.

The above should hopefully get you started with developing on RHEL, but you can do so
much more! For example, here are some commands to run a program in the background in
your shell.

./someprogram & Start someprogram in the background.
You can also just start someprogram and
hit CTRL-Z to suspend it and send it to the
background.

jobs Show all background jobs in current shell;
add -l for more information on the jobs.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

4

bg [number] Continue suspended job (i.e. a job
suspended with CTRL-Z) in the background.

fg [number] Bring a background job to the foreground
again.

And if you need to get an idea on how your application or system is performing, you might
like these commands

free Show the amount of free memory. Please
note it’s not necessarily a problem if Linux
seems to use a lot of memory!

vmstat 3 Every three seconds, show statistics about
the system, like utilization, memory in use,
etc.

iotop Show ‘top’ like output for disk i/o. Must be
root to run this.

ps xauww Show the system process list

Finally, maybe you want to use Java instead of PHP. These two commands install some
programs you might want to use in that case

subscription-manager repos --enable
rhel-server-rhscl-7-rpms

Enable the Software Collections
repositories to install packages from
(required for Maven)

yum -y install java-1.8.0-openjdk-
devel tomcat maven30 git

Single command to install your Java
compiler, Tomcat webserver, maven and git.

About the Author

Maxim Burgerhout is a solution architect in the Red Hat
Benelux team. He is often spotted talking about systems
management and infrastructure, including infrastructure
automation, implementing self-service deployments and
configuration management.

In the past, he’s been involved in various migrations from
legacy Unix to Red Hat Enterprise Linux. Those migrations
always involved making developers feel at home on the new
platform by providing the right tools and documentation and
getting them up to speed quickly.

Maxim has done some development in Ruby, PHP and Python
in the past and is currently learning Java, because, well, 	
just because.

 @MaximBurgerhout  Linkedin

hp
Typewriter
downloaded from: Quizol PDF

http://www.linuxatemyram.com/
https://bit.ly/quizolpdf

