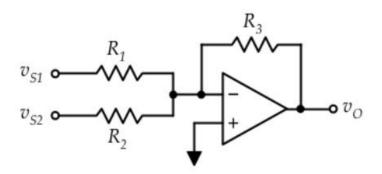

In the circuit shown below $R_2 = 17.5 \text{ k}\Omega$.

Assume that the op-amp is ideal.

Determine the value of R_1 so that the magnitude of closed-loop gain, $G = v_O / v_S$ is 7.

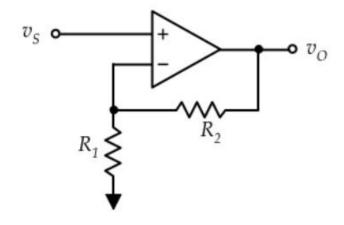

Answer

$$R_1 = 2.5 \text{ k}\Omega$$

In the circuit shown below R_1 = 10 kΩ, R_2 = 8 kΩ and R_3 = 48 kΩ

Assume that the op-amp is ideal.

If v_{S1} = 0.8 V_{DC} and v_{S2} = -0.5333 V_{DC} determine the DC output voltage.

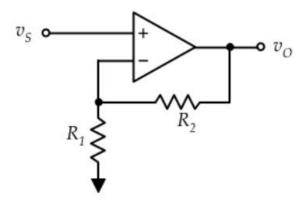

Answer

$$v_{\rm O} = -0.64 \, \rm V_{\rm DC}$$

In the circuit shown below R_1 = 6 k Ω and R_2 = 132 k Ω .

Assume that the op-amp is ideal.

Determine the closed-loop gain, $G=v_{\mbox{\scriptsize O}}\,/\,v_{\mbox{\scriptsize S}}$.

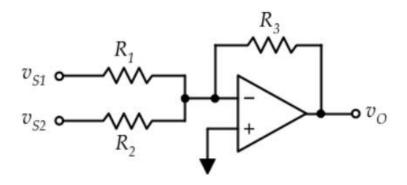

Answer

$$G = 23$$

In the circuit shown below $R_2 = 14 \text{ k}\Omega$.

Assume that the op-amp is ideal.

Determine the value of R_1 so that the closed-loop gain, $G=v_O\,/\,v_S=8.$

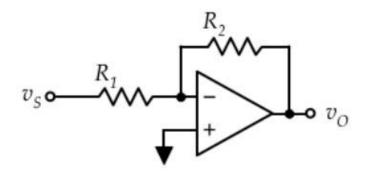

Answer

$$R_1 = 2 k\Omega$$

In the circuit shown below R_1 = 12 k Ω , R_2 = 12 k Ω and R_3 = 72 k Ω

Assume that the op-amp is ideal.

If v_{S1} = -0.4667 V_{DC} and v_{S2} = 0.2 V_{DC} determine the DC output voltage.

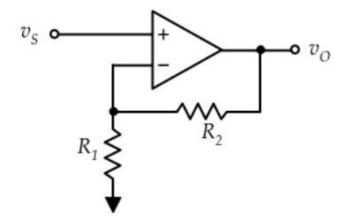

Answer

$$v_O = 1.6 V_{DC}$$

In the circuit shown below $R_1 = 7.5 \text{ k}\Omega$ and $R_2 = 112.5 \text{ k}\Omega$.

Assume that the op-amp is ideal.

Determine the closed-loop gain, $G = v_O / v_S$.

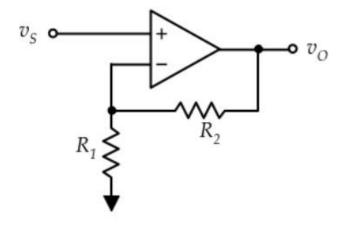

Answer

$$G = -15$$

In the circuit shown below $R_2 = 48 \text{ k}\Omega$.

Assume that the op-amp is ideal.

Determine the value of R_1 so that the closed-loop gain, $G=\mathrm{v}_O\,/\,\mathrm{v}_S=5.$

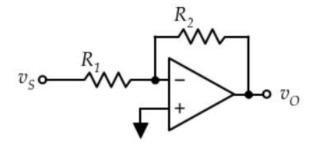

Answer

$$R_1 = 12 k\Omega$$

In the circuit shown below $R_1 = 1 \text{ k}\Omega$ and $R_2 = 1 \text{ k}\Omega$.

Assume that the op-amp is ideal.

Determine the closed-loop gain, $G=v_O\,/\,v_S$.

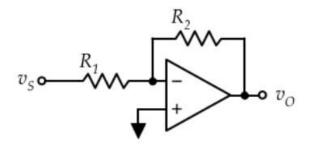

Answer

G = 2

In the circuit shown below R_1 = 0.5 $k\Omega.$

Assume that the op-amp is ideal.

Determine the value of R_2 so that the *magnitude* of closed-loop gain, $G = v_O \ / \ v_S$ is 17.


Answer

$$R_2 = 8.5 \text{ k}\Omega$$

In the circuit shown below $R_2 = 24 \text{ k}\Omega$.

Assume that the op-amp is ideal.

Determine the value of R_1 so that the magnitude of closed-loop gain, $G = v_O / v_S$ is 24.

Answer

$$R_1 = 1 k\Omega$$

Downloaded from: Quizol PDF