
Page | 1

The most efficient algorithm to solve a Rubik’s cube

Science Research project

Justin Marcellienus

10 Polding

Page | 2

The most efficient algorithm to solve a Rubik’s cube

Aim

CoŶstƌuĐtiŶg a Lego Ruďik’s Đuďe solǀeƌ ;ŵost effiĐieŶt ŵethod of solǀiŶg a Ruďik’s ĐuďeͿ

Introduction

The Rubik's Cube is a 3-D combination

puzzle invented in 1974 by Hungarian

sĐulptoƌ aŶd pƌofessoƌ of aƌĐhiteĐtuƌe EƌŶő
Rubik. Since then its immense success has

led to it ďeĐoŵiŶg the ǁoƌld’s ŵost
successful toy in history with nearly 350

million units being sold worldwide. Despite

the relatively simple concept, the cube has

over 43 Quintillion

(43,252,003,274,489,856,000) different

combinations of scrambling. Nevertheless

the legal aƌƌaŶgeŵeŶt of the Ruďik’s Cuďe
can be solved in 20 moves or fewer, with

the use of a variety of algorithms. The most important part of solving a Rubik's Cube is understanding

how it works. When looking at a Rubik's Cube, there are six sides, each containing nine pieces. The

sides can be rotated in many ways, but regardless of what is done to the cube (unless taken apart) the

centre pieces don't move with respect to each other. Therefore, when the cube is being solved, the

central pieces cannot move position.

The Ruďik’s ĐaŶ ďe solǀed usiŶg a ƌaŶge of diffeƌeŶt algoƌithŵs ƌaŶgiŶg from layered, which can be

done by hand using patterns, or heuristic which require complex equations that subdivide a cube

requiring connection to a PC for extra operating power.

The pƌoďleŵ that ǁill ďe iŶǀestigated is the ĐoŶstƌuĐtioŶ of a Ruďik’s Đuďe solver using Lego

Mindstorms (robotics kit) and using software to test several different algorithms/methods of solving

the Đuďe. EaĐh ŵethod is used to solǀe a staŶdaƌd 3ǆ3 Ruďik’s Đuďe to deteƌŵiŶe ǁhiĐh algoƌithŵ
would take the least number of moves within the least period of time. To understand the algorithms,

the Ruďik’s Đuďe is Ŷotated ďased oŶ side, tuƌŶs aŶd Đuďe ƌotatioŶ, to alloǁ foƌ siŵplified eƋuatioŶs.
To denote a sequence of moves on the 3×3×3 Rubik's Cube the ͞“iŶgŵasteƌ ŶotatioŶ͟ is applied which

was originally proposed by David Singmaster in 1979.

Page | 3

Cube Notation (Singmaster notation)

Faces

There are 6 faces on a cube. Each face is represented by a letter, according to where it is located.

These faces make the most sense when you hold the cube with one face parallel to the ground and

one face facing you, but algorithm pages will often display the cube so that you can see the front,

right, and top faces. The six faces are:

 F (Front) - the side facing you.

 U (Up) - the side facing upwards.

 R (Right) - the side facing to the right.

 B (Back) - the side facing away from you.

 L (Left) - the side facing to the left.

 D (Down) - the side facing downwards.

Turns

A turn of one layer of one of the six faces of the cube is written by adding a suffix (F, U, R, B, L, and D)

to the face's name. There are three possible turns that can be applied to a face and all moves should

be applied as if you were looking at the face straight-on. Using the U face as an example, the following

are possible turns:

 U - A 90-degree clockwise turn of the U face.

 U' - A 90-degree counter clockwise turn of the U face.

 U2 - A 180-degree turn (either clockwise or counter clockwise) of the U face.

Cube Rotations

Cube rotations involve turning the entire cube. Although it does not ĐouŶt as a ͞ŵoǀe͟ it helps ĐhaŶge
cube perspective to shorten algorithms. The possible cube rotations, which can also be modified with '

(90 degree counter-clockwise) or 2 (180 degree turn clockwise or anti-clockwise) like a face turn are:

 x or [r] - a rotation of the entire cube as if doing an R turn.

 y or [u] - a rotation of the entire cube as if doing a U turn.

 z or [f] - a rotation of the entire cube as if doing an F turn.

Cube algorithms

Three popular algorithms exist for solving the cube – Thistlethǁaite’s algoƌithŵ, KoĐieŵďa’s Algoƌithŵ
aŶd Koƌf’s Algoƌithŵ. KoĐieŵďa’s Algoƌithŵ ǁas aŶ iŵpƌoǀeŵeŶt oŶ Thistlethǁaite’s algoƌithŵ. Koƌf’s
Algorithm was developed by Richard Korf in 1997. He claimed to optimally solve the cube by iterative

deepening. With his algorithm he claimed one could solve the cube in 18 moves.

Page | 4

Thistlethwaite's algorithm

Made by: Morwen Thistlethwaithe

Date: 1981

Average moves: 45

The way the algorithm works is by restricting the positions of the cubes into groups of cube positions

that can be solved using a certain set of moves.

Group Description Formula

Group 0 This group contains all possible

positions of the Rubik's Cube

G0 = <L,R,F,B,U,D>

Group 1 Positions that can be reached

from the solved state with

quarter turns of the left, right,

front and back faces of the

Rubik's Cube, but only double

turns of the up and down sides.

G1 = <L,R,F,B,U2,D2>

Group 2 Restricted to turns that can be

reached with only double turns

of the front, back, up and down

faces and quarter turns of the

left and right faces.

G2 = <L,R,F2,B2,U2,D2>

Group 3 Positions in this group can be

solved using only double turns

on all sides.

G3 = <L2,R2,F2,B2,U2,D2>

Group 4 The final stage, completely

solved

G4 = {I}

Page | 5

Kociemba's Algorithm

Made by: Herbert Kociemba

Date: 1992

Average moves: 20

Thistlethwaite's algorithm was improved by Herbert Kociemba in 1992. He reduced the number of

groups to only two therefore making a substantial decrease in required moves to a maximum of 29

moves and a minimum of 19

Group Description Formula

Group 0 All possible positions of the

cube

G0 = < L,R,F,B,U,D >

Group 1 Split into the top half of the

cube which uses the IDA

formula to subdivide and solve

G1 = <U,D,L
2
,R

2
, F

2
,B

2
>

Group 2 Split into the bottom half of the

cube which uses the IDA

formula to subdivide and solve

G2 = <L2,R2,F2,B2,U2,D2>

Page | 6

Korf's Algorithm

Made by: Richard Korf

Date: 1997

Average moves: under 20

Koƌf’s algoƌithŵ is ďased oŶ the ǁoƌks of KoĐieŵďa’s algoƌithŵ iŶ teƌŵs of splittiŶg the Đuďe iŶto

subgroups. However he simplified it down to a mere 2 groups using the IDA* code. The IDA code is a

general search algorithm that simplifies the steps required to travel from the root to the solution using

a complex code called the Psuedocode. First he identified a number of sub problems that are small

enough to be solved optimally:

1. The cube restricted to only the corners, not looking at the edges

2. The cube restricted to only 6 edges, not looking at the corners or at the other edges.

3. The cube restricted to the other 6 edges.

The Lego Robot

The LEGO Mindstorms NXT is a programmable robotics kit released by LEGO in late July 2006, it comes

with:

 1 NXT processor brick

 3 servo motors

 1 colour sensor

 1 ultrasonic sensor

 2 touch sensors

It comes with the NXT-G programming software, or LabVIEW for LEGO MINDSTORMS. A variety of

unofficial coding languages exist, such as NXC, NBC, leJOS NXJ, and RobotC that can be read by the

CPU block.

Page | 7

NXT Intelligent Brick

The main component in the kit is a brick-shaped computer called the NXT Intelligent Brick. It can take

input from up to four sensors (2 touch sensors, ultrasonic sensor and colour sensor) and control up to

three servo motors, using connecting RJ12 cables. The brick has a 100×60 pixel black and white LCD

screen and four buttons that can be used to navigate user interface menus. It has a 32-bit ARM7TDMI-

core Atmel AT91SAM7S256 microcontroller with 256KB of FLASH memory and 64KB of RAM, plus an 8-

bit Atmel AVR ATmega48 microcontroller, and Bluetooth support. It also has a speaker and can play

sound files at sampling rates up to 8 kHz. Power is supplied by 6 AA (1.5 V each) batteries in the

consumer version of the kit.

A Ruďik’s Đuďe solǀeƌ ǁill Ŷeed to use Đolouƌ seŶsoƌs to deteĐt the Đolouƌs aŶd tƌaŶsfeƌ the data to the

central NXT brick, where it is solved. Then the solution needs to be translated into actions for the

servo motors to turn the cube and twist layers. Once the basic functions of the motors are programed,

it should be relatively easy to swap out the programing with each algorithm.

The ƌoďot ǁill haǀe a flat ďase ǁith a ƌotatiŶg tuƌŶtaďle that ǁill house the Ruďik’s Cuďe. It ǁill iŶĐlude
an arm to flip the cube by tilting it over the turntable and guiding it in place. Finally, a colour sensor

will be mounted to scan the colours of each face and transfer information to the central brick were it

will process the solution. During construction the robot is split into 4 main parts which are added

together, these are the:

 Flipping arm

 Color sensor arm

 Turntable

 Robot Base

NXT programing Software

The NXT programming software that is bundled with the Mindstorms kit is a NXT-G v2.0 is a graphical

programming environment that can be used for real-world programming. The coding language

supports virtual instruments for all LEGO branded and most 3rd party sensors/components. Although

it is rather basic, predominantly used for parallel sense and respond loops (e.g. wait 60 seconds and

plaǇ a ͞ďeep͟Ϳ, it can be used in conjunction with a multitude of other coding software, opening it up

to much more advanced functions.

Variables

Independent variable

The independent variable will be the algorithm used to determine the solution for the cube. The three

algorithms tested will be:

• Thistlethwaite's

• Kociemba's

• Korf's

Each algorithm will need to be transferred to the NXT program and uploaded to the robot for each

test.

Page | 8

Dependent variable

DuƌiŶg the iŶǀestigatioŶ the aŵouŶt of tiŵe takeŶ foƌ the Ruďik’s Đuďe to ďe ĐoŵpletelǇ solǀed ǁill ďe
measured starting from the scanning stage to the final completion stage. Additionally the number of

moves taken to reach the solved state will be recorded.

Controlled variables

Variable How could it affect your experiment? How will it be controlled?

Design of the

robot

Altering the design of the robot midway

through the experiment could result in

changes of efficiency, possibly leading to

discrepancies in the time taken to solve the

cube

 This could be controlled by

ensuring all of the pieces in the

robot are the same for each

test. A pre-test check should be

completed before resuming the

next test.

Battery life

The battery life of the 6 AA batteries used to

run the robot can often run flat quickly,

leading to a significant reduction in power to

the servo motors making them run slower.

This could lead to the results being inaccurate

due to differences in the motor power

To alleviate the affects, 6

energizer AA rechargeable

batteries will be used. They will

be fully charged before each

test

Jumbled position

of the cube

The position/state of the cube must be

identical in all test setups otherwise it may

change the amount of moves required to

solve the cube

Before each test, the cube must

be jumbled in the identical state

so it is the same for each test

Determining when

to start/stop timer

Starting the timer at the right time is

important as, failing to do so may result in

the results being inaccurate

This issue can be alleviated by

starting the timer at specific

point, such as soon as the robot

starts scanning and stopping it

once the last move is

completed.

Page | 9

Hypothesis

I ďelieǀe that RiĐhaƌd Koƌf’s algoƌithŵ ǁill ďe the ŵost effiĐieŶt ŵethod to solǀe the Đuďe. AĐĐoƌdiŶg
to previous research, it is can be deduced that Koƌf’s algorithm will require the least number of moves

and time due to the fact that it elaborates on the findings of all previous formulae. Additionally it uses

CPU power and RAM from a PC to calculate solutions to the subdivided algorithms in the shortest

time.

Equipment

Equipment that is needed to do the experiment/s includes:

 1 Complete Lego Mindstorms NXT kit

 Extra Lego pieces

 Ruďik’s Cuďe
 Each Algorithm code transferred to NXT program

 High powered computer with a minimum of 8gb RAM and an high end processor (over

3ghz)

 6 Rechargeable AA batteries

 Stopwatch

Method

Robot construction

1. CoŶstƌuĐt the flippiŶg aƌŵ that fits aƌouŶd the Ruďik’s Đuďe faĐe, usiŶg 1 seƌǀo ŵotoƌ aŶd
other pieces

2. Construct the Colour sensor arm, using 1 colour sensor and 1 servo motor. The colour sensor

should ďe positioŶed so that it ǁill ďe Đlose to the Ruďik’s Đuďe iŶ opeƌatioŶ ;to iŵpƌoǀe
colour detection)

3. CoŶstƌuĐt the tuƌŶtaďle foƌ the Ruďik’s Đuďe, eŶsuƌiŶg that the Đuďe fits sŶuglǇ ǁith ŵiŶiŵal
space to move, however not completely jammed. Connect to 1 servo motor

4. Construct the base of the Robot, ensuring it is completely flat with no pieces obstructing the

flipping arm or colour sensor.

5. Connect the RJ12 cables to the corresponding colour sensor and motor:

1 - Color sensor

2 - Ultrasonic sensor

A - Turntable motor

B - Tilter arm motor

C - Color sensor motor

Page | 10

Page | 11

Page | 12

Robot coding

1. UsiŶg a siŵple algoƌithŵ, set the ƌoot pƌogƌaŵ iŶ NXT ǁith eaĐh ͞stƌiŶg͟ of pƌogƌaŵ foƌ eaĐh
particular move and create a template.

2. Download the Thistlewaite source code onto a computer with the NXT program installed

3. Using the NXT software and a java application, transfer the code to the NXT template made in

step 1.

4. EŶsuƌe the Đode is Đoŵpatiďle ǁith the NXT aŶd ĐheĐk foƌ aŶǇ ͞ďƌokeŶ liŶes͟ iŶ the Đode

5. Connect the NXT block to a computer via Bluetooth or cable

6. Upload the executable NXT file to the processing brick

7. Run the calibration test, to place motors in the right position

8. Repeat steps 2-7 for the Kochiemba and Korf Algorithms

Page | 13

Conducting the experiment

1. Ensure the 6 AA batteries are fully charged and inserted into the NXT brick

2. Scramble the brick into the exact pre-assigned position

3. PlaĐe the Ruďik’s Đuďe oŶto the tuƌŶtaďle

4. Turn on the Robot and launch the executable program file

5. “taƌt the tiŵeƌ as sooŶ as a ͞ďeep͟ souŶds ďefoƌe the sĐaŶŶiŶg

6. Record the amount of moves taken to solve the cube

7. “top the tiŵeƌ oŶ the seĐoŶd ͞ďeep͟
8. Repeat the experiment on the same algorithm 3 times to ensure consistency

9. Repeat steps 1-7 for the Kochiemba and Korf algorithms

10. Record all results and arrange into a table

Page | 14

Risk assessment

Risk How the risk will be reduced or

avoided

Risk Level

Short circuit

This risk could be avoided by

making sure wires are on the

right connection and not being

obstructed by anything before

connecting the power.

Medium

Computer fire

hazard

Due to the heavy workload on

the computer components trying

to solve algorithms, the

computer must have adequate

cooling to keep the hardware at

a safe operational temperature

(below 80 degrees)

Low

Fingers can get

jammed in the

motor

Do not place fingers near the

ƌoďot’s ŵotoƌs ǁhilst iŶ
operation

Low

Results

After completing the experiment, the results reflect what I expected upon research on the internet. In

summation, the results proved:

 The Thistleǁaite algoƌithŵ ǁas the least effeĐtiǀe ŵethod of solǀiŶg the Ruďik’s Đuďe
requiring an average of 42 moves and 3 mins and 48 seconds

 The Kociemba algorithm proved to be the 2nd most effective algorithm, requiring an average of

28 moves and 2 mins and 32 seconds

 The Korf algorithm proved to be the most effective algorithm, requiring an average of 20

moves and 2 mins and 5 seconds

As seen in the data, the more efficient the algorithm was, the less amount of moves it took to solve

the saŵe juŵďled Ruďik’s Đuďe, theƌefoƌe ǇieldiŶg shoƌteƌ ĐoŵpletioŶ tiŵes.

Page | 15

Analysis

Thistlewaite Algorithm

Test number Number of moves Time taken

Test #1 45 3:56

Test #2 40 3:45

Test #3 40 3:43

Kociemba Algorithm

Test number Number of moves Time taken

Test #1 29 2:35

Test #2 25 2:26

Test #3 29 2:35

45

40 40

3:56

3:45

3:43

3:36

3:38

3:41

3:44

3:47

3:50

3:53

3:56

3:59

37

38

39

40

41

42

43

44

45

46

Test #1 Test #2 Test #3

Thistlewaite Algorithm

Number of moves Time taken

2:21

2:22

2:24

2:25

2:26

2:28

2:29

2:31

2:32

2:34

2:35

2:36

23

24

25

26

27

28

29

30

Test #1 Test #2 Test #3

Kociemba Algorithm

Number of moves Time taken

Page | 16

 Korf Algorithm

Test number Number of moves Time taken

Test #1 20 2:05

Test #2 20 2:05

Test #3 20 2:05

Summary (all 3 algorithms)

Algorithm Average Number of moves Average Time taken

Thistlewaite 42 3:48

Kociemba 28 2.32

Korf 20 2:05

0:00

0:14

0:28

0:43

0:57

1:12

1:26

1:40

1:55

2:09

2:24

0

5

10

15

20

25

Test #1 Test #2 Test #3

Korf Algorithm

Number of moves Time taken

42

28

20

3:48

2:32

2:05

0:00

0:28

0:57

1:26

1:55

2:24

2:52

3:21

3:50

4:19

0

5

10

15

20

25

30

35

40

45

Thistlewaithe Kociemba Korf

Most efficient Algorithm (Average values)

Number of moves Time taken

Page | 17

Discussion

After conducting the experiment, there are quite evident trends which are present in the experiment

results. Across all three algorithms, they each displayed and produced similar, consistent results

respectively. As seen in the graphs, the Thistlewaite algorithm was the least effective method followed

by Kociemba algorithm, leaving the Korf algorithm as the most efficient. These results were expected

based on information gathered online.

As seen in the results, the 3 algorithms performed as expected, due to a variety of reasons:

The Thistlewaite algorithm was the least effective, solǀiŶg the Ruďik’s Đuďe ƌeƋuiƌiŶg aŶ aǀeƌage of 42

moves and 3 mins and 48 seconds. This can be attributed to the fact Thistlethwaite's method differs

from layer algorithms and corners first algorithms in that it does not place pieces in their correct

positions one by one. Instead it works on all the pieces at the same time, restricting them to fewer and

fewer possibilities until there is only one possible position left for each piece and the cube is solved.

Thistleǁaites algoƌithŵ lies iŶ the ͞uppeƌ ďouŶds͟ ŵeaŶiŶg it takes ŵoƌe ŵoǀes to solve. This is due

to the fact that the sub problems are only split into 4 subgroups which restricts the amount of moves

the equation can be simplified too.

The Kociemba algorithm proved to be the 2nd most effective algorithm, requiring an average of 28

moves and 2 mins and 32 seconds. Herbert Kociemba algorithm managed to combine several ideas

into a very effective new algorithm which will give good sub-optimal solutions very quickly. It may well

find an optimal solution to a position fairly soon, but it may take a long time for it to actually prove the

solution is optimal by trying out all shorter sequences. The first idea was based on Thistlethwaite's

work. Kociemba uses only two phases however; this therefore explains the improvement in the

amount of moves required and time taken however still not being the most effective

The Korf algorithm proved to be the most effective algorithm, requiring an average of 20 moves and 2

mins and 5 seconds. However it needs to be taken into consideration that the computer connected to

the robot, was running for a week prior to the experiment calculating the simplified Korf algorithm,

which would normally take 35 CPU years to compute. The expected result can be attributed to the fact

that the Korf algorithm is based on a multi-phase coding, which means the equations are divided into

numerous sub problems which are solved by the computers CPU. Furthermore, when it is split into

tables, normally in the other methods there are a number of ways to reach the solution, however, the

Korf algorithm limit the search depths of later phases therefore further optimising the number of

moves required, instead of creating multiple solutions. This can be evident in the results, with all three

tests of the Korf algorithm yielding the exact same number of moves (20 moves) and time (2mins

5secs) as opposed to other algorithms that did not remain consistent between the tests.

The experiment encompassed the entire experimental concept and met all of the requirements of the

scientific research method set. All controlled variable remained constant throughout the experiment.

The experiment achieved the aim which was set directly with a fair test. This is re-affirmed by similar

results found online showing the same relative trends between the efficiency of each of the

algorithms. This proves that other researchers would be able to perform exactly the same experiment,

under the same conditions and generate the same results, reinforcing the findings to ensure that the

wider scientific community will accepts the hypothesis.

Page | 18

The experiment was repeated 3 times for each algorithm and then averaged out for the final graph the

data was extremely consistent with the data showing no major outliers in the results. Although this

still quite reliable, This could have been further improved by testing the experiment a larger number

of times to re-enforce the reliability, perhaps repeating the experiment 10 times per algorithm, but

this was not an option due to time and battery limitations. With each battery requiring 15 hours of

charging time and 1 set in the NXT requiring 6, to complete 30 sets of tests would require 450 hours in

charging time of batteries alone and require a large amount of money spent on buying rechargeable

batteries, this was out of the budget and could not be achieved. Nonetheless the experiment was

meticulously conducted to ensure the controlled variables remained the same throughout all the tests.

Variables such as using the design of the robot, battery life, programming, jumbled position of the

cube and when to stop/start the timer, remained consistent and controlled throughout all of the

experiment tests. Furthermore, by making using a robot to solve the cube, instead of merely noting

down the moves and solving the cube by hand, it eliminates any room for human error on

inconsistencies. This includes, reducing inconsistencies with the time taken to solve, incorrect moves

and a range of other human errors, consequently this drastically improves the reliability as the robot

performs predictable moves at programmed speeds that remain consistent. If this experiment was to

be redone without the limitations of the current scenario, more batteries could be bought and used to

increase the test size. In doing so, it would serve to increase the validity of the overall experiment.

The overall level of accuracy in all of the tests was high, this could be attributed to the fact that all

measurements recorded were made accurately, such as documentation of moves taken and time

taken. Starting the stopwatch and finishing it at the exact right time was planned carefully to ensure a

fair test. Once again, the fact that the human interference with the experiment was minimised, greatly

improved the accuracy of the test, preventing human errors or inconsistencies. The algorithms used in

the experiment were checked thoroughly to ensure it remained as true to the root code as possible

when transferring it to the NXT to make sure that the tests gave an accurate representation of the

efficiency of the actual algorithm. On the other hand, there are several other strategies implemented

in the testing that could further improve the accuracy of the experiment. If given more time, an

automatic stopwatch could be programed to appear on the LCD display, not only could this make

testing much more convenient, but also reduce the possibility for human error drastically. Additionally,

if Đost ǁasŶ’t a pƌoďleŵ, the Ŷeǁ Lego MiŶstoƌŵs ;EV3Ϳ, ǁould haǀe ďeeŶ aďle to help ǁith the
accuracy of the test by doing all the computing of the algorithms on its own CPU, without connection

to a PC. This could mean that the coding would not need to be altered at all to be uploaded to the

robot.

In hindsight, there are a range of different limitations that were faced when conducting the

experiment that hindered the test results, these either led to compromises in the method, or changes

to the experiment to facilitate the limitations. The tests conducted had 3 main limitations which were:

cost, time and equipment/software available:

Cost/equipment

In the conducted tests, a Mindstorms NXT set was used to create the robot, however the NXT is a

previous generation model which has many flaws as opposed to the new EV3 Mindstorms kit. The EV3

kit has numerous additional features such as upgraded processing power, increased sensitivity sensors,

high powered servo motors and many others. At a $500 price, though this was clearly not an option as

it was out of the budget. Therefore, it was a much more viable option to use the NXT set regardless of

Page | 19

trade-offs of additional features. Additionally, the high cost of rechargeable batteries was a factor that

had to be considered as by buying a fresh set of batteries for each test would cost excessive amounts

of money. Therefore, by purchasing 2 sets of rechargeable batteries I was able to alleviate the

problem with the trade-off being decreased battery life and a 15 hour charge waiting time.

Time

Due to the high complexity of the experiment regarding, designing, building, coding and testing, time

was an issue throughout with only 4 weeks to complete the experiment. This includes the long process

of finding the root algorithms online and transferring them to the NXT software, this meant that I had

less tiŵe to ĐoŶstƌuĐt the ƌoďot, ďeĐause the ƌoďot ĐouldŶ’t ďe tested ǁithout it. AdditioŶallǇ, ǁith
only 5 days to complete the experiment, it meant that running 10 tests of each algorithm was not an

option due to the long charging time of the batteries.

The tests performed can be applied into everyday life and be used in real life situations to a certain

degree. The IDA* Heuristic code is a very common code that is one of the best general-purpose graph

search algorithms when there's a way to estimate the distance to the goal. IDA* is extremely

beneficial when the problem is memory constrained because IDA* does not remember any node

except the ones on the current path it has an extremely small memory profile, as opposed to A*,

which keeps a large queue of unexplored nodes that can quickly fill up memory. This is especially

helpful in society as this code can help simplify equations with little usage of memory; it is often used

in search engines and a range of phone apps.

Things to consider: TestiŶg otheƌ algoƌithŵs to solǀiŶg the Ruďik’s Đuďe to see hoǁ the Đoŵpaƌe ;e.g.

Friedrich algorithm, etc.)? How fast the robot can solve the cube

Conclusion

In conclusion, the trends in the data support the hypothesis that Korf algorithm will take the least

amount of time and moves to solve a Rubik’s cube.

 The Thistleǁaite algoƌithŵ ǁas the least effeĐtiǀe ŵethod of solǀiŶg the Ruďik’s Đuďe
requiring an average of 42 moves and 3 mins and 48 seconds

 The Kociemba algorithm proved to be the 2nd most effective algorithm, requiring an average of

28 moves and 2 mins and 32 seconds

 The Korf algorithm proved to be the most effective algorithm, requiring an average of 20

moves and 2 mins and 5 seconds

This conclusion is based on the data received from a consistent, reliable and accurate experiment. The

results were expected as most of sources which were used in the research pointed out the same

information.

Page | 20

Page | 21

Acknowledgements

 Oriana Miano (Providing information and assistance on various aspects of writing a scientific

report, additionally, providing an experimental report scaffold)

 David Gilday (Mindcuber.com outline of robot design)

 Karen Marcellienus (Proofreading and ensuring coherency of the report)

 Jessica Marcellienus (Photographer of the robot)

Bibliography

 "Algorithm List." - How to Solve a Rubik's Cube.
http://www.personal.psu.edu/mjr5125/blogs/how_to_solve_a_rubiks_cube/algorithm-list.html
(accessed July 19, 2014).

 "Bob Burton's Cubewhiz.com." Bob Burton's Cubewhiz.com. http://www.cubewhiz.com/notation.php
(accessed July 16, 2014).

 "Cube Explorer 5.01." brandeis.
http://www.cs.brandeis.edu/~storer/JimPuzzles/RUBIK/Rubik3x3x3/READING/KociembaPage.pdf
(accessed July 23, 2014).

 "CubeTwister." CubeTwister. http://www.randelshofer.ch/cubetwister/ (accessed January 1, 2014).

 "Download the Software." LEGO.com Downloads. http://www.lego.com/en-
us/mindstorms/downloads/nxt (accessed July 17, 2014).

 "Easiest to code algorithm for Rubik's cube?." java.
http://stackoverflow.com/questions/1354949/easiest-to-code-algorithm-for-rubiks-cube (accessed July
17, 2014).

 "How to Solve a Rubik's Cube (Easy Move Notation)." wikiHow. http://www.wikihow.com/Solve-a-
Rubik's-Cube-(Easy-Move-Notation) (accessed July 18, 2014).

 "How to solve the Rubik’s Cube." How to solve the Rubik's Cube. http://ruwix.com/the-rubiks-
cube/how-to-solve-the-rubiks-cube-beginners-method/ (accessed July 18, 2014).

 "IDA*." Heuristicswiki -. http://heuristicswiki.wikispaces.com/IDA* (accessed July 22, 2014).

 "MindCub3r for LEGO MINDSTORMS EV3." MindCuber for EV3 . http://www.mindcuber.com/
(accessed July 21, 2014).

http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website

Page | 22

 "Online Rubik's Cube Solver Program." Online Rubiks Cube Solver. http://ruwix.com/online-rubiks-
cube-solver-program/ (accessed July 16, 2014).

 Wikimedia Foundation. "Optimal solutions for Rubik's Cube." Wikipedia.
http://en.wikipedia.org/wiki/Optimal_solutions_for_Rubik's_Cube (accessed July 19, 2014).

 "Pseudocode Examples." Pseudocode Examples.
http://www.unf.edu/~broggio/cop2221/2221pseu.htm (accessed July 25, 2014).

 "Rubik's Cube Notation." WikiCube. http://rubiks.wikia.com/wiki/Notation (accessed July 16, 2014).

 "Rubik's Cube Software." / Programs / Scripts. http://software.rubikscube.info/ (accessed July 27,
2014).

 "Rubik's Cube Solution Methods." / Techniques (Waterman/Ortega/Minh Thai).
http://www.rubikscube.info/ (accessed August 2, 2014).

 "RubikCube Compatibility After Effects." AE scripts + Plugins . http://aescripts.com/rubikcube/
(accessed August 1, 2014).

 "Rubiks cube 3x3 solution." Rubiks_cube_3x3_solution. http://rubiks.com/solving-
guide/pdf/Rubiks_cube_3x3_solution-en.pdf (accessed July 18, 2014).

 "Tilted Twister." Tilted Twister. http://tiltedtwister.com/ (accessed July 20, 2014).

 "Welcome »." Program to Solve Your Rubik's Cube. http://www.famvangestel.nl/ (accessed August 1,
2014).

 "algorithms to solve rubik's cube." algorithms to solve rubik's cube.
http://www.cs.swarthmore.edu/~knerr/helps/rcube.html (accessed July 18, 2014).

 Conde Nast Digital. "iPhone App Solves Rubik’s Cube in 20 Moves or Better | Business | WIRED."
Wired.com. http://www.wired.com/2009/01/iphone-app-solv/ (accessed July 29, 2014).

downloaded from: Quizol PDF

http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
http://www.bibme.org/website
https://bit.ly/quizolpdf

