
Python Quick Reference Guide

Overview
Python is a powerful, object-oriented open-source scripting language that is in use all over the world. In
Iguana and Chameleon, you can write Python scripts that allow you to manipulate HL7 message data.
The following pages provide a brief summary of the features of Python.

Basic Concepts

Data Types

Numbers can be integers or floating point values:

42 3.14159

Strings can be enclosed in single or double quotes, and can contain any printable character:

"test" 'Hello, world!'

The following escape sequences can be used in strings:

Escape Sequence Meaning

\\ Backslash

\' Single quote (useful in strings enclosed in single quotes)

\" Double quote (useful in strings enclosed in double quotes)

\n Newline (linefeed)

\r Carriage return

\t Horizontal tab

To create a raw string, in which backslashes are not interpreted as escape sequences, specify r before the
opening single quote or double quote that encloses the string:

rawstr = r"This is a \raw \string \that \contains four backslashes"

Variables

A variable can be any combination of letters, digits and underscore characters. The first character cannot
be a digit. Variables in Python are case sensitive: variable and VARIABLE are not the same.

x _LabName RESULT2 VaRiAbLe

Assignment

Use an assignment to store a value in a variable:

patientid = 42113
patientstatus = "Admitted"

iNTERFACEWARE Python Quick Reference Guide 1

Python Quick Reference Guide

The None Object

Python defines a special object, called None, that can be used to specify the empty value:

value = None

By default, the Python None object is disabled in VMD files. See Disabling/Enabling the Python
None Object in the manual for more details.

String and Number Conversion

Use int, float and str to convert numbers to strings and vice versa:

integertemp = int("37")
floattemp = float("98.6")
stringtemp = str(98.6)

Displaying Values

print displays values on the screen or in a log file:

print 'The patient ID is', patientid

You can use %s with print to display the values of variables as part of a string:

print 'The patient IDs are %s and %s' % (patientid1, patientid2)

Comments

Everything after the # character is treated as a comment and ignored:

this is a comment
temperature = 98.6 # this is also a comment

Multi-Line Statements

Use \ to continue a statement on more than one line:

floattemp =\
float("98.6")

Arithmetic

Python supports the standard arithmetic operations on integers and floating point numbers:

y = x + 1 # addition y = x – 1 # subtraction
y = x * 1.8 # multiplication y = x / 1.8 # division
y = 33 % 4 # remainder from division, or modulo; y is 1 in this example
y = 2 ** 5 # exponentiation, or x to the power y; 32 in this example

Operations are normally performed in this order: **, then *, / and %, then + and -.
Use parentheses to specify an order of operation.

You can use the + and * operators with strings:

patientid = "4" + "2" + 2 * "1" + "3" # patientid is assigned '42113'

iNTERFACEWARE Python Quick Reference Guide 2

Python Quick Reference Guide

Conditional Statements and Loops
Conditional Statements: if, elif and else
Use if, elif and else to define code to be executed if a specified condition is true:

if patientid == 42113:
print "The patient ID is 42113"

elif patientid == 42007:
print "The patient ID is 42007"

else:
print "The patient ID is some other number"

Python uses indenting to determine which statements are contained inside a conditional statement. Avoid
mixing spaces and tabs when indenting.
The condition in a conditional statement must be terminated with a : (colon) character.

Loops: while and for
Use while to define code to be executed while a specified condition is true:

display the numbers from 1 to 10
x = 1
while x <= 10:

print x
x = x + 1

Use for to loop through a range of numbers or a list:
display the numbers from 1 to 10
for x in range(1, 11):

print x

Controlling Loops: break and continue
Use break to exit from the middle of a loop, or continue to start another iteration of a loop:

print 1 to 5 # print 1 to 10, skipping 5
x = 1 x = 1
while x <= 10: while x <= 10:

print x if x == 5:
if x == 5: x = x + 1

break continue
x = x + 1 print x

x = x + 1

Comparison Operators
Symbol Meaning Symbol Meaning

== Equal to <= Less than or equal to

!= or <> Not equal to > Greater than

< Less than >= Greater than or equal to

Boolean Operators
Use and and or to specify multiple conditions for a conditional statement, or not to negate a condition:

if not (patientid == 42113 and hospitalid == 2000) or labid == 5555:
print "True!"

Using None in Comparisons
If your VMD file has None defined, you can use it in conditional expressions:

if value == None:
Value is empty.

iNTERFACEWARE Python Quick Reference Guide 3

Python Quick Reference Guide

Lists
A list is an ordered collection of values. Lists are enclosed in brackets ([]):

patientids = [42446, 42113, 42007]
segmentlist = ["MSH", "EVN", "PID", "NK1", "PV1"]

Lists can contain numbers, strings, or other lists.

Assignment From Lists
You can assign a list to a variable or to multiple variables at once:

patientinfo = ['JohnDoe', 42446, 'Admitted', 1000]
(patientname, patientid, patientstatus) = ['JohnDoe', 42446, 'Admitted']

You can also assign a single element of a list to a variable:
patientid = patientinfo[1] # assigns the second element of patientinfo to patientid

List Editing Functions

Function Description Example

append Add a value to the end of a list x = [1, 2, 3]
x.append(4) # x is now [1, 2, 3, 4]

del Delete a value from a list x = [1, 2, 3, 4]
del x[1] # x is now [1, 3, 4]

index Return the index of an item in a list x = [1, 2, 3, 5, 2, 4]
y = x.index(3) # y is now 2

len Return the number of values in a list x = [1, 2, 3, 4]
y = len(x) # y is now 4

pop Remove an item from a list and
return it

x = [1, 2, 3, 4]
y = x.pop(1) # x is now [1, 3, 4]; y is now 2
z = x.pop() # x is now [1, 3]; z is now 4

remove Remove a specified element from a
list

x = [1, 2, 3, 4]
x.remove(2) # x is now [1, 3, 4]

reverse Reverse the order of a list x = [1, 2, 3, 4]
x.reverse() # x is now [4, 3, 2, 1]

sort Sort a list in numeric or alphabetic
order

x = [3, 1, 4, 2]
x.sort() # x is now [1, 2, 3, 4]
y = ['c', 'd', 'b', 'a']
y.sort() # y is now ['a', 'b', 'c', 'd']

You can also use + to join two lists:
x = [1, 2] + [3, 4] # x now contains [1, 2, 3, 4]

Lists and Conditional Statements
You can use lists with the for and if statements:

primes = [2, 3, 5, 7, 11, segments = ["MSH", "EVN", "PID",
13, 17, 19, 23, 29] "NK1", "PV1"]

for x in primes: if x in segments:
print x print x, "is a segment in the list"

iNTERFACEWARE Python Quick Reference Guide 4

Python Quick Reference Guide

Dictionaries
A dictionary is a collection of key-value pairs. In a dictionary definition, a key and its value are separated
by a colon:

pidlist = {"Smith,Mary":"P12345", "Doe,John":"P12346", "Jones,Charlie":"P12347"}

Accessing Dictionaries

To access a value, supply its key:

patientid = pidlist["Doe,John"]

To add a new element to a dictionary, assign a value to a new key:

pidlist["Baxter,Ted"] = "P12350"

To update an element of a dictionary, assign a new value to its key:

update the patient ID for Charlie Jones
pidlist["Jones,Charlie"] = "P55555"

To delete an element from a dictionary, use del:

del(pidlist["Doe,John"])

Use has_key to check whether a key is defined in a dictionary:

if not pidlist.has_key["Roe,Jane"]:
print "Jane Roe's patient ID is not known"

Dictionaries and Loops

To use a dictionary in a loop, use the keys function. This processes each element of the dictionary in turn:

for name in pidlist.keys():
patientid = pidlist[name]
print name, "has Patient ID", patientID

Note that keys does not process elements in any particular order. To process keys in alphabetical order,
use sort:

sortedkeys = pidlist.keys()
sortedkeys.sort()
for name in sortedkeys:

patientid = pidlist[name]
print name, "has Patient ID", patientid

Mapping
You can use dictionaries to map one set of values to another:

mapping = {
'PatientID_internal':'PatientID_external',
'DoctorID_internal':'DoctorID_external',
'FacilityID_internal':'FacilityID_external'

}

This is more convenient than using a chain of if and elif statements.

iNTERFACEWARE Python Quick Reference Guide 5

Python Quick Reference Guide

Functions

Creating a Function
To create a function, use the def statement:

def print_HL7_field_delimiter():
print "|"

The statements contained in the function definition must be indented.
To call a function, specify its name followed by parentheses:

print_HL7_field_delimiter()

You must define a function before you can use it.

Function Parameters
You can use parameters to pass values to a function:

def print_delimiter(text):
print text

print_delimiter("|")

You can specify a default value for a parameter, to be used if the function call does not provide one:
def print_multiple_delimiters(text, count=1):

print text * count

print_multiple_delimiters("|") # prints |
print_multiple_delimiters("|", 3) # prints |||

Return Values
Use return to specify a return value from a function:

def FtoC(degf):
degc = (degf – 32) / 1.8
return degc

tempf = 98.6
tempc = FtoC(tempf)

A function can return more than one value:
def FtoC_andK(degf):

degc = (degf – 32) / 1.8
degk = degc + 273.15
return degc, degk

Local and Global Variables
Variables created (assigned to) inside functions are local variables (unless the global statement is used to
indicate a global variable). A local variable cannot be accessed outside the function in which it was created:

def FtoC(degf):
degc = (degf – 32) / 1.8
return degc # degc is a local variable

Variables created outside functions are global variables, and can be accessed anywhere.

iNTERFACEWARE Python Quick Reference Guide 6

Python Quick Reference Guide

Working With Strings
String Indexing and Slices
You can use an index or a slice to copy part of a string to a variable:

Copy Operation Syntax Example In Example, substring of
"XYZ Hospital and Treatment Center"

which is assigned to x

Copy a single character [num] x = loc[1] x is assigned the second character of the
string, which is "Y"

Copy a single character,
indexing from end of
string

[-num] x = loc[-2] x is assigned the second-last character of the
string, which is "e"

Copy a slice [num1:num2] x = loc[1:3] x is assigned the second and third characters,
which are "YZ"

Copy a slice, starting
from the beginning of the
string

[:num] x = loc[:3] x is assigned the first three characters, which
are "XYZ"

Copy all but the first num
characters of a string

[num:] x = loc[17:] x is assigned the last characters of the string,
which are "Treatment Center"

Copy a slice, starting
from the end of the string

[-num:] x = loc[-3:] x is assigned the last three characters, which
are "ter"

Copy all but the last num
characters of a string

[:-num] x = loc[:-2] x is assigned
"XYZ Hospital and Treatment Cent"

Copy a slice, indexing
from the end of the string

[-num1:-num2] x = loc[-4:-2] x is assigned the third-last and fourth-last
characters, which are "nt"

You can also use slices with lists:
segmentlist = ["MSH", "EVN", "PID", "NK1", "PV1"]
x = segmentlist[1:3] # x is now ['EVN', 'PID']

String Capitalization Functions
Function Description Example

capitalize Convert the first character to upper case, and
the rest to lower case

x = "abc"
x = x.capitalize() # x is now "Abc"

lower Convert all characters to lower case x = "ABC"
x = x.lower() # x is now "abc"

swapcase Convert upper case characters to lower case,
and lower to upper

x = "Abc"
x = x.swapcase() # x is now "aBC"

title Convert the first character of every word to
upper case, and the rest to lower case

x = "ABC DEF"
x = x.title() # x is now "Abc Def"

upper Convert all characters to upper case x = "abc"
x = x.upper() # x is now "ABC"

iNTERFACEWARE Python Quick Reference Guide 7

Python Quick Reference Guide

Editing Functions
Function Description Example

strip([chars]) Remove all leading and trailing
occurrences of the characters in
chars – remove spaces and tabs if
chars is not specified

location = "*=*Treatment*=Center=*="
newloc = location.strip("*=")
newloc is "Treatment*=Center"

lstrip([chars]) Same as strip, except that it
affects leading characters only

location = "*=*Treatment*=Center=*="
newloc = location.lstrip("*=")
newloc is "Treatment*=Center=*="

rstrip([chars]) Same as strip, except that it
affects trailing characters only

location = "*=*Treatment*=Center=*="
newloc = location.rstrip("*=")
newloc is "*=*Treatment*=Center"

replace(src, dst
[,max])

Replace all occurrences of the
substring src with dst – max, if
specified, is the maximum number
of replacements

location = "Treatment Center"
newloc = location.replace("e","E",2)
newloc is "TrEatmEnt Center"

zfill(len) Pad a string with leading zeroes to
make it length len

patientid = "42113"
patientid = patientid.zfill(10)
patientid is now "0000042113"

Chameleon also defines built-in functions that handle character stripping:

Function Description Example

strip_chars(char, string) Strip all occurrences of
char from string

value = strip_chars('_', value)

strip_leading_chars(char,
string)

Strip all leading char
characters from string

value = strip_leading_chars('0', value)

strip_trailing_chars(char,
string)

Strip all trailing char
characters from string

value = strip_trailing_char('0', value)

strip_non_numeric_chars
(string)

Remove all non-numeric
characters from string

value = strip_non_numeric_chars(value)

Splitting and Searching Functions
Function Description Example

split(delim [,max]) Split a string into a list, breaking at
every occurrence of delim – max is
optional and represents a maximum
number of breaks

location = "XYZ,Treatment,Center"
wordlist = location.split(",")
wordlist contains ['XYZ',
'Treatment', 'Center']

find(str [,start [,end]]) Return the index of a character or
substring str in a string (or -1 if not
found) – start and end are optional,
and represent the start and end
indexes of the search

location = "XYZ Treatment Center"
x = location.find("Treat")
x is now 4

delim.join(list) Create a string from list, using delim
to separate each pair of elements in
the list

wordlist =
['XYZ','Treatment','Center']

location = ",".join(wordlist)

iNTERFACEWARE Python Quick Reference Guide 8

Python Quick Reference Guide

String Comparison Functions

Function Description

isalnum Return True if all characters in the string are alphanumeric

isalpha Return True if the string consists of letters

isdigit Return True if the string consists of digits

islower Return True if the string consists of non-capitalized letters

isspace Return True if the string consists of whitespace (spaces or tabs)

istitle Return True if the string is in title format (for example, "This Is A Title")

isupper Return True if the string consists of capitalized letters

startswith(prefix) Return True if the string starts with the substring prefix

endswith(suffix) Return True if the string ends with the substring suffix

Because string comparison functions return True or False, they are ideal for use in conditional statements:
location = "XYZ Hospital and Treatment Center"
if (location.startswith("XYZ")):

print "The location starts with 'XYZ'"

Pattern Matching in Strings
In Python, the re module allows you to use regular expressions to search in a string for a substring
matching a specified pattern. Functions provided in this module include:

Function Description

re.search(pattern,str[,flag]) Search for a substring matching pattern in string str; flag is optional, and
controls the behavior of the search. Returns the search object used by
search.start and search.group

search.start If a pattern match is found by re.search, return the index of the start of the
matched substring

search.group If a pattern match is found by re.search, return the matched substring

re.sub(pattern, repl, str[,
count])

Find occurrences of pattern in str and replace them with repl. count, if
provided, specifies the maximum number of replacements

iNTERFACEWARE Python Quick Reference Guide 9

Python Quick Reference Guide

Special Characters in Pattern Matching
The pattern parameter for re.search can contain any or all of the following special characters:

Character Meaning

* Zero or more occurrences of the preceding character

+ One or more occurrences of the preceding character

? Zero or one occurrences of the preceding character

. Any character

[chars] Any character inside the brackets

[char1-char2] Any character in the range between char1 and char2

[^chars] Any character not inside the brackets

{num} Exactly num occurrences of the preceding character

{num1,num2} Between num1 and num2 occurrences of the preceding character

| Matches either of two alternatives (for example, abc|def)

^ Matches the start of the string only

$ Matches the end of the string only

^(?!str) Matches anything other than str

^(?!str1|str2) Matches anything other than str1 and str2

\ If followed by any of the above characters, indicates that the following
character is not to be treated as a special character

\s Matches any whitespace character (including space, tab, newline and carriage
return)

\d Matches any digit (0 through 9)

\w Matches any digit, any alphabetic character, or underscore

Here is an example that uses a regular expression to perform a search:
import re

pattern = '(iss)+'
search = re.search(pattern,'Mississippi')
if search:

match = search.group()
index = search.start()
print "Matched", match, "at index", index

To specify that case is to be ignored when searching, specify the IGNORECASE flag as a parameter for
search:

import re

substring = 'xyz'
the following search is successful
search = re.search(substring,'XYZ HOSPITAL',re.IGNORECASE)

iNTERFACEWARE Python Quick Reference Guide 10

Python Quick Reference Guide

Error Detection
Python allows you to define exception handlers that catch and handle runtime errors generated by your
program. To define an exception handler, use the try and except statements:

try:
cost = totalcost / days

except ZeroDivisionError:
print "Division by zero error"

The error name in the except statement always matches the error name that appears in a runtime error
message. You can provide multiple except statements in an exception handler.
For a complete list of the runtime errors defined in Python, see the Built-in Exceptions section of the
online Python documentation.

Modules
A module is a file containing a collection of functions and variables. This collection can be referenced by
other Python programs. For example, here is a module that handles temperature conversion:

def FtoC(degf):
degc = (degf – 32) / 1.8
return degc

def CtoF(degc):
degf = degc * 1.8 + 32
return degf

All files that define modules must have a suffix of .py. The name of a file always matches the name of
its module: if a file is named temperature.py, the module it contains is named temperature.

Importing Modules
To use a module, import it into your code using the import statement:

import temperature

degf = temperature.CtoF(37.0)

When you use import, you must specify the module name to access the module's functions and variables.
If you do not want to specify the module name when calling a function, use from to import the function:

from temperature import CtoF

degf = CtoF(37.0)

You can use from to import every function and variable in a module:
from temperature import *

Using Built-In Modules
Python provides built-in modules that perform a variety of common tasks. To use a built-in module,
ensure that the module is in the Python engine's search path, and use import or from to import the
module into your code.
For a complete list of the Python modules supported in Chameleon, see the Supported Python Libraries
section of the manual: http://www.interfaceware.com/manual/python_libraries.html.

iNTERFACEWARE Python Quick Reference Guide 11

Python Quick Reference Guide

Using Python Scripts in Chameleon
In Chameleon, you can use Python scripts to massage data when parsing incoming HL7 messages,
generating outgoing HL7 messages, or transforming one HL7 format into another.

Using Python When Parsing Messages
When parsing HL7 messages in Chameleon, you can create:

• A Global Inbound Script, to be executed before parsing begins;
• Segment Inbound Scripts, which manipulate segment field data;
• Table Inbound Scripts, which manipulate table column data;
• A Global Inbound Post Process Script, to be executed after the message data is placed into table

objects.
This diagram shows the order in which these scripts are executed:

The following global variables are defined in message parsing scripts:

Script Variable Contents

All scripts environment Enables database connection and date/time formatting

Global Inbound and
Global Inbound Post
Process only

value The entire message string

Segment Inbound only value The first subfield of the current field

field All subfields of the current field

Table Inbound only value The table column data

table Contains a method that removes the current row of the table

iNTERFACEWARE Python Quick Reference Guide 12

Python Quick Reference Guide

Using Python When Generating Messages
When generating HL7 messages in Chameleon, you can create:

• A Global Outbound Preprocess Script, which is executed before message generation to define variables
and functions;

• Table Outbound Scripts, which manipulate table column data;
• Segment Outbound Scripts, which manipulate segment field data;
• A Global Outbound Post Process Script, which is executed after the message string has been

generated.
This diagram shows the order in which these scripts are executed:

The following global variables are defined in message generation scripts:

Script Variable Contents

All scripts environment Enables database connection and date/time formatting

guid Contains a method that creates a unique global ID for the HL7
message

Table Outbound only value The table column data

Segment Outbound only value The first subfield of the current field

field All subfields of the current field

Global Outbound Post
Process only

value The entire message string

iNTERFACEWARE Python Quick Reference Guide 13

Python Quick Reference Guide

Using Python When Transforming Messages
When using Chameleon to transform HL7 messages, you can create:

• A Global Inbound Script, which preprocesses the message before transformation begins;
• A Transformation Script, which performs the actual transformation.

This diagram shows the order in which these scripts are executed:

The following global variables are defined in message transformation scripts:

Variable Contents

environment Enables iteration over all message segments, database connection, and date/time
formatting

value The HL7 message string

Delimiter Functions
The following functions specify or set HL7 delimiters in Chameleon. In these functions, environment is the
predefined Chameleon environment variable.

Function Description

separator_char(environment,num) Returns the delimiter specified in the Options Window.
num corresponds to:

0 - Segment delimiter
1 - Composite delimiter
2 - Sub-composite delimiter
3 - Sub-sub-composite delimiter

set_separator_char(environment, num,
newValue)

Sets the delimiter specified by num to newValue. The
values of num are the same as in separator_char

escape_char(environment) Returns the escape delimiter specified in the Options
window.

set_escape_char(environment, newValue) Sets the escape delimiter to newValue

repeat_char(environment) Returns the repeat delimiter specified in the Options
window.

set_repeat_char(environment, newValue) Sets the repeat delimiter to newValue

iNTERFACEWARE Python Quick Reference Guide 14

Python Quick Reference Guide

Additional Resources
We hope that you have found this Quick Reference Guide useful. For more information on Python, refer to
the following resources:

• The Using Python Scripting section of the iNTERFACEWARE products manual:
http://www.interfaceware.com/manual/python.html

• The documentation provided for the version of Python supported by Chameleon:
http://www.python.org/doc/2.2.3/

• The Python Tutorial page: http://www.python.org/doc/2.2.3/tut/tut.html

iNTERFACEWARE Python Quick Reference Guide 15

hp
Typewriter
downloaded from: Quizol PDF

https://bit.ly/quizolpdf

	Overview
	Basic Concepts
	Data Types
	Variables
	Assignment
	The None Object
	String and Number Conversion
	Displaying Values
	Comments
	Multi-Line Statements
	Arithmetic

	Conditional Statements and Loops
	Conditional Statements: if, elif and else
	Loops: while and for
	Controlling Loops: break and continue
	Comparison Operators
	Boolean Operators
	Using None in Comparisons

	Lists
	Assignment From Lists
	List Editing Functions
	Lists and Conditional Statements

	Dictionaries
	Accessing Dictionaries
	Dictionaries and Loops
	Mapping

	Functions
	Creating a Function
	Function Parameters
	Return Values
	Local and Global Variables

	Working With Strings
	String Indexing and Slices
	String Capitalization Functions
	
Editing Functions
	Splitting and Searching Functions
	String Comparison Functions
	Pattern Matching in Strings
	Special Characters in Pattern Matching

	Error Detection
	Modules
	Importing Modules
	Using Built-In Modules

	Using Python Scripts in Chameleon
	Using Python When Parsing Messages
	Using Python When Generating Messages
	Using Python When Transforming Messages

	Delimiter Functions
	Additional Resources

