
References ("ref:") are from
http://docs.python.org/py3k/reference/

Values and Variables

Variables are not declared;
Variables can be assigned any type of
value at any time using =.

average = (first + second) / 2

1b. Operators

add + ; subtract - ; multiply * ; power **
• Truncating (round-down) division: //
• Normal division: /
• String concatenation uses +

Comparison (==,!=,<,<=,>,>=) checks
object content, (not addresses) for all
standard types.

Logic operators: and, or, not

String - type name "str"

Use double or single quotes.
There is no separate character type.
To make a multi-line string, """use 3
double (or single) quotes."""
Indexing with brackets (s[i]) works.

"if' statements

if x < y:
! print(“Big!”)
else:
! print(“small.”)
! x = x + 1

Common functions

int(“52”) # The integer 52
int(98.6) # The integer 98
str(52) # The string “52”
float(52) # The float 52.0

x = 42
y = 24
print(x)
Prints 42 on its own line

print(x, y)
Prints “42 24” on one line

print(str(x) + “|” + str(y))
Prints “42|24”

n = int(\
 input(“Number, please: ”))
Reads in literal string;
int() converts it

Importing Packages

To use code from another Python file...

import math

if x >= 0:
! print("Square root of", \
! x, " is ", \
! math.sqrt(x))
else:
! print("Negative number!")

Alternative (beware of name conflicts.)

from math import *

if x >= 0:
! print("Square root of", \
! x, " is ", sqrt(x))
else:
! print("Negative number!")

Defining Your Own Functions

ref: compound_stmts.html#function-definitions

def order(val1, val2):
 """State which value naturally
 comes first.
 """
 if val1 < val2:
 print(val1, “comes first”)
 else:
 print(val2, “comes first”)

def sum3(a, b, c):
 “Add 3 numbers.”
 return a + b + c

The string that follows the header is
used for documentation generation.

order("joe", "black")
Prints “black comes first”

order(13, 21)
Prints “13 comes first”

print(sum3(1, 5, 9))
Prints 15

! Python 3.x Summary ! Python 3.x Summary ! Python 3.x Summary

©2011 RIT Department of Computer Science! J. Heliotis, Revision 3.2

For loops

for n in [“how”, “are”, “you”]:
! print(n)
Prints “how”, “are”, and “you”

for n in range(5):
! print(n)
Prints 0, 1, 2, 3, and 4

for n in range(10, 0, -2):
! print(n)
Prints 10, 8, 6, 4, and 2

While loops

n = 10
while n > 0:
! print(n)
! n = n - 2
Prints 10, 8, 6, 4, and 2

More about Data Model

Everything in Python is an object.
Assignment (=) effects sharing of data.

x = [1, 2, 3] # a list
y = x
x[1] = 5 # 2 changed to 5
print(y) # prints “[1, 5, 3]”

Numbers (float, int), bools, and
strings can’t be changed; they are for
all intents and purposes not shared.

None is used for a variable with no value.

An immutable object cannot have its
contents changed. (But a variable
referring to an immutable object can be
reassigned to a new object.)

Built-in data structures

ref: datamodel.html#the-standard-type-hierarchy

All of the following can be iterated over
with a for loop.

String (immutable) - str

(See reverse side.)

List (mutable; see 1a) - list

x = ["r","o","o","f"]
works with the str "roof" as well
Example of using an index
for i in range(len(x)):
! print(x[i])
Prints "r", "o", "o", and "f"

Tuple: an immutable list - tuple

y = (4, 5, 6) # can't be changed

Dictionary/Set (mutable) - dict/set

d = { "fee": 9, "fo": 18 }
Order of keys is not settable.
d["fum"] = 21
d["fo"] = 17
for key in ("fum","fee","fo"):
! print(d[key])
Prints 21, 9, and 17

A set is just a dict containing keys
without values.

names = {"Manny","Moe","Jack"}

Defining Your Own Classes

Use a class to define your own
composite data type.

Sample Class Definition

ref: compound_stmts.html#class

class Point(object):
 “A 2-dimensional point”
 __slots__ = ("x", "y")

 def __init__(self, x, y):
 “constructor”
 self.x = x
 self.y = y
 def distFromOrigin(self):
 return \
 math.sqrt(self.x**2 + \
 self.y**2)
 def __str__(self):
 “to-string converter”
 return "(" + \
 str(self.x) + \
 "," + \
 str(self.y) + ")"

Examples of Class Use

def test():
 p = Point(3, 4)
 print(p.x)
 print(p)
 print(p.distFromOrigin())

test()
Prints 3, “(3,4)”, and 5.0

! Python 3.x Summary ! Python 3.x Summary ! Python 3.x Summary

©2011 RIT Department of Computer Science! J. Heliotis, Revision 3.2

hp
Typewriter
downloaded from: Quizol PDF

https://bit.ly/quizolpdf

